De Novo Asymmetric Synthesis of Anamarine and Its Analogues

Dong Gao and George A. O'Doherty*
Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506
George.ODoherty@mail.wvu.edu

Received August 9, 2005

The enantioselective synthesis of anamarine has been achieved in 21 steps. The route relies on enantio- and regioselective Sharpless dihydroxylation of dienoate ester and zinc borohydride reduction to establish the C-8-C-11 stereochemistry. A diastereoselective Leighton allylation established the desired C-5 stereochemistry. The route has also been used to prepare two diastereoisomers of anamarine in 14 steps.

Introduction

For the last five years, we have been interested in a class of natural products with a skipped, 1,3-polyol/5,6-dihydro- $2 H$-pyran-2-one structural motif which possess a wide range of biological properties. ${ }^{1,2}$ This interest has met with some degree of success in terms of total synthesis. ${ }^{3}$ As a result of these efforts, we became interested in the synthesis of natural products with a 1,2-polyol/5,6-dihydro- $2 H$-pyran-2-one structural motif. Thus, we targeted the antitumor pyranone natural product anamarine for synthesis (1a, Figure 1).

The 5,6-dihydro- 2 H -pyran-2-one containing natural product, anamarine ($\mathbf{1 a}$), was isolated from the flowers and leaves of a Peruvian hyptis. Other members of this α, β-unsaturated lactone class of natural products include spicigerolide (2), hyptolide (3), and synrotolide (4) (Figure 1), which possess an array of properties ranging from cytotoxicity against human tumor cells to antibacterial and/or antifungal activity. ${ }^{4}$

Numerous synthetic approaches to this class of molecules have been reported. ${ }^{5}$ In contrast to these previous syntheses, which derived their absolute and relative stereochemistry from carbohydrates, ${ }^{5}$ we were interested

[^0]
anamarine (1a)

hyptolide (3)

FIGURE 1. The anamarine-type α, β-unsaturated lactones.
in preparing several stereoisomers of anamarine via asymmetric catalysis. ${ }^{6}$ Recently, we demonstrated the viability of this approach for the preparation of two epimers of anamarine. ${ }^{5 f}$ Key to this approach was the discovery of an expedient and practical synthesis of C-6substituted galacto-sugars from simple achiral precursors with complete stereocontrol (5-6, Scheme 1). ${ }^{7}$ Herein, we report the full account of this approach and detail the application for the synthesis of anamarine.

[^1]
SCHEME 1. Retrosynthetic Analysis of Anamarine and Its Analogues

Results and Discussion

We envisioned that the lactone rings of anamarine $\mathbf{1 a}$ could be prepared by a ring-closing metathesis reaction ${ }^{8}$ of triene $5 \mathbf{5 a}$ (Scheme 1), which could be obtained from 6a by a reduction, a Leighton allylation, ${ }^{9,10}$ and acylation. Finally, it was envisioned that the C-8 through C-11 tetrol stereochemistry of $\mathbf{6 a}$ could be established by applying two Sharpless dihydroxylations followed by an inversion at C-10. ${ }^{11}$ By simply skipping the inversion at C-10 and performing a diastereo-divergent allylation reaction, two diastereomers of anamarine ($\mathbf{1 b}$ and $\mathbf{1 c}$) should be produced.

In our initial approach to 10-epi-anamarine (1b), we targeted the bis-acetonide $6 \mathbf{b}$ as a key intermediate (Scheme 2). We envisioned preparing $\mathbf{6 b}$ from trienoate 8, which was easily prepared by a Wittig reaction of commercially available 2,4-hexadienal and ylide ($\mathrm{EtO}_{2^{-}}$ $\mathrm{CCH}=\mathrm{PPh}_{3}$). Exposing trienoate 8 to the Sharpless dihydroxylation protocol yielded a diol, which was protected as the acetonide to give dienoate $\mathbf{9}$ in a good yield (72% for two steps) and enantiomeric excess (90% ee). A second Sharpless dihydroxylation on dienoate 9 was preformed using the stereochemically matched ligand system ((DHQD) ${ }_{2}$ PHAL). The desired diol 10b was formed with excellent diastereocontrol; however, to our surprise, it was also formed with a significant amount of the undesired regioisomer 10a. The two regioisomers 10a and 10b were obtained in a 1:1 ratio. To our delight,
(8) For a review on ring-closing metathesis reactions, see: (a) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413. (b) Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199-2238. For other uses of this pyranone formation in synthesis, see ref 3 and: (c) Pradaux, F.; Bouzbouz, S. Org. Lett. 2001, 3, 2233-2235. (d) Ghosh, A. K.; Wang, Y.; Kim, J. T. J. Org. Chem. 2001, 66, 8973. (e) Reddy, M. V. R.; Yucel, A. J.; Ramachandran, P. V. J. Org. Chem. 2001, 66, 2512. (f) Wang, Y.-G.; Kobayashi, Y. Org. Lett. 2002, 4, 4615. (g) Mizutani, H.; Watanabe, M.; Honda, T. Tetrahedron 2002, 58, 8929. (h) Trost, B. M.; Yeh, V. S. C. Org. Lett. 2002, 4, 3513. (i) Falomir, E.; Murga, J.; Carda, M.; Marco, J. A. Tetrahedron Lett. 2003, 44, 539.
(9) Kubota, K.; Leighton, J. Angew. Chem., Int. Ed. 2003, 42, 946948.
(10) We initially considered the use of the catalytic asymmetric allylation reagent developed by Keck but were dissuaded by its use of stoichiometric tin. See: (a) Keck, G. E.; Krishnamurthy, D. Org. Synth. 1997, 75, 12. (b) Keck, G. E.; Tarbet, K. H.; Geraci, L. S. J. Am. Chem. Soc. 1993, 115, 8467-8468.
(11) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.

SCHEME 2. Initial Synthesis of Ester 6b

the desired regioisomer $\mathbf{1 0 b}$ was separated by chromatography and protected as bis-acetonide $\mathbf{6 b}$.

Unfortunately, removing the acetonide protecting group had no positive effect on the regioselectivity of the second dihydroxylation. ${ }^{12}$ This loss of regiocontrol is not solely due to the ligand. It also occurred when 9 was dihydroxylated under ligandless conditions (i.e., when 9 was exposed to $\mathrm{OsO}_{4} / \mathrm{NMO}$, four diastereomeric tetrol products were produced).

In a search for better regioselectivity in the synthesis of ester $\mathbf{6 b}$, we investigated the bis-dihydroxylation of the commercially available ethyl sorbate (7) (Scheme 3). Thus, ethyl sorbate (7) was enantioselectively dihydroxylated $\left(1 \mathrm{~mol} \% \mathrm{OsO}_{4}\right.$ and $\left.2 \mathrm{~mol} \%(\mathrm{DHQ})_{2} \mathrm{PHAL}\right)$ and

SCHEME 3. Improved Synthesis of Ester 6b

(12) In contrast to our results for acetonide 14 and its corresponding diol, Smith observed excellent regiocontrol ($>10: 1$) in the dihydroxylation of related substituted epoxytrienoates. Similarly, they observed no significant loss of stereocontrol in the mismatched (slower) case. See: Smith, A. B., III; Walsh, S. P.; Frohn, M.; Duffey, M. O. Org. Lett. 2005, 7, 139-142.
the corresponding diol was protected to give acetonide 11 in good yield (74% for two steps) and enantiomeric excess (80% ee). ${ }^{7 a}$ Once again, the α, β-unsaturated ester 11 was dihydroxylated in a diastereomerically matched sense, ${ }^{5 f}$ with the pseudoenantiomeric reagent ($2 \mathrm{~mol} \%$ $\mathrm{OsO}_{4}, 4 \mathrm{~mol} \%(\mathrm{DHQD})_{2} \mathrm{PHAL}, 3$ equiv of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, 3$ equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and 1 equiv of $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$). This diastereoselectively matched reaction gave a diol (diastereomeric ratio $=10: 1$), which was protected as the acetonide 12 (66% yield for two steps). It is worth noting that as a result of performing the second dihydroxylation (11-12) with a diastereomerically matched chiral reagent system, the bis-acetonide 12 was isolated with greater enantiomeric purity (>96\% ee) than the initial acetonide 11. ${ }^{13}$

Having established the relative and absolute stereochemistry of 10 -epi-anamarine $\mathbf{1 b}$ in 12, we looked to convert ester 12 into α, β-unsaturated ester $\mathbf{6 b}$. This was accomplished by an exhaustive reduction of ester 12 with DIBALH (3.0 equiv, 93\%) followed by a Swern oxidation, providing aldehyde 13 (82% yield, two steps). Finally, a Wittig reaction of aldehyde 13 with $\mathrm{EtO}_{2} \mathrm{CCH}=\mathrm{PPh}_{3}$ provided the desired ester $\mathbf{6 b}$ in 81% yield.

To approach the correct diastereomer 6a, we returned to the asymmetric synthesis of the diastereomeric aldehyde 21 from the ethyl sorbate 7 (Scheme 4). As we previously described, ethyl sorbate was enantioselectively dihydroxylated and the corresponding diol was converted into cyclic carbonate 14 in good yield (74% for two steps) and enantiomeric excess (80% ee). ${ }^{7 \mathrm{~b}}$ Treatment of carbonate 14 with a catalytic amount of palladium (0) (0.5 mol $\% / 2 \mathrm{~mol} \% \mathrm{PPh}_{3}$) and p-methoxyphenol as the nucleophile provided the protected alcohol 15 in 91% yield. The other hydroxyl group was protected as silyl ether to give 16. Enoate 16 was then dihydroxylated in a diastereomerically matched sense, ${ }^{7 \mathrm{~b}}$ with the matched reagent (2 mol $\% \mathrm{OsO}_{4}, 4 \mathrm{~mol} \%(\mathrm{DHQD})_{2} \mathrm{PHAL}, 3$ equiv of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$, 3 equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}$, and 1 equiv of $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$) to diastereoselectively give a diol which was protected as the acetonide 17 (66% yield for two steps). As a result of performing the second dihydroxylation (16-17) with a diastereomerically matched chiral reagent system, the acetonide 17 was isolated with greater enantiomeric purity ($>96 \%$ ee) than the initial diol.

We next looked into the inversion of the stereochemistry at C-10. Because our initial efforts to accomplish this with Mitsunobu chemistry met with little success, we turned to an oxidation/reduction strategy. Selective deprotection of the p-methoxyphenoxy ether (CAN) followed by Dess-Martin periodinane oxidation provided ketone 18. Cleavage of the silyl ether with benzoic acid and TBAF gave alcohol 19. Sodium borohydride reduction of the TBS-protected ketone 18 gave two diastereomers in a $4: 1$ ratio. Unfortunately, the major diastereomer was the undesired syn-diol. So, we turned to a chelationcontrolled reduction. Treating the deprotected ketone 19 with zinc borohydride gave the anti-diol as the major product in a 5:1 ratio. The anti-diol was then treated with 2,2-dimethoxypropane and CSA, providing bis-acetonide

[^2]
SCHEME 4. Synthesis of Epimeric Ester 6a

20 in good yield. With the relative and absolute tetrol stereochemistry established in 20, we next looked to homologate ester 20 into enaote 6a. Exhaustive reduction of ester 20 with DIBALH (3.0 equiv, 93%) followed by a Swern oxidation (88\%) provided aldehyde 21 in 82% yield for two steps. A Wittig reaction of aldehyde 21 with corresponding ylide $\left(\mathrm{EtO}_{2} \mathrm{CCH}=\mathrm{PPh}_{3}\right)$ provided a $1: 1$ ratio of Z / E isomers of acetonide $\mathbf{6 a}, \mathbf{c}$ in 86% yield, which were inseparable. ${ }^{14}$

In an attempt to shorten the route to ester 6a, we tried oxidizing the C-10 alcohol before the asymmetric dihy-

SCHEME 5. Alternative Approach to Ester 6a

[^3]
SCHEME 6. Installation of the Pyranone Ring in 26a,b

droxylation (Scheme 5). The oxidation of the allylic alcohol in $\mathbf{2 2}$ with TEMPO was accomplished after initial TBS protection of the C-5 alcohol (67% for two steps). To our surprise, the dihydroxylation reaction only gave a $3: 1$ mixture of diastereomers 23a and 23b, respectively (75\% yield for the two isomers). Although this is a shorter sequence, because of the difficulty in separating the diastereomers 23a and 23b, we found it easier to prepare material by the previous route (Scheme 4).

The problem associated with inseparable double-bond isomers 6a and 6c was solved when the esters were converted into aldehydes 24a and 24c. This was accomplished by a reduction/oxidation sequence. Exposure of a THF solution of two isomers, 6a,c, with 3.0 equiv of DIBALH at $-78{ }^{\circ} \mathrm{C}$ provided allylic alcohol (Scheme 6), which without purification was oxidized with MnO_{2} to give aldehyde 24a,c in good yield (82% for two steps). At the aldehyde stage, the two isomers were separable. More importantly, the undesired isomer 24c was converted back to the desired isomer upon treatment with 10 mol $\%$ TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (80% of a $10: 1$ ratio). By an identical sequence, the $\mathrm{C}-10$ diastereomer $\mathbf{6 b}$ was converted into aldehyde 24b (82\%).

With the two desired aldehydes 24a,b in hand, we turned to the installation of the pyranone portion of the natural product. We envisioned that a diastereoselective allylation of aldehydes $\mathbf{2 4 a , b}$ could be achieved by using either enantiomer of the easily prepared Leighton allyl silane reagents (S, S)-27 ${ }^{9}$ (Schemes 6 and 7). This was accomplished by simply adding a solution of either aldehyde 24a or 24b to the allylsilane reagent (S, S)-27 (0.2 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) at $-10^{\circ} \mathrm{C}$ to give allylic alcohols 25a,b in 91% and 92% yields with near complete stereocontrol

SCHEME 7. Installation of the Pyranone Ring in 26c

($>99 \%$ ee and dr). ${ }^{15,16}$ The allylic alcohols 24a,b were coupled with DCC (4 equiv) and acrylic acid (4 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, providing trienes 5a and 5b in 83% and 78% yields, respectively. We next turned to the use of a ringclosing metathesis reaction to form the lactone ring. This was easily implemented by exposure of a refluxing $\mathrm{CH}_{2}{ }^{-}$ Cl_{2} solution of the trienes $\mathbf{5 a}, \mathbf{b}$ to the Grubbs catalyst 28 ($10 \mathrm{~mol} \%$), resulting in a clean cyclization to dihydropyrans 26a and 26b in 77% and 82% yields, respectively.

The other diastereomeric series can be made by simply switching to the enantiomeric Leighton reagent $((R, R)$ -ent-27, Scheme 7). Thus, exposing aldehyde 24b to the enantiomeric Leighton reagent, (R, R)-ent-27, yielded a diastereomerically pure allylic alcohol $\mathbf{2 5 c}$ (95\%), which, as before, could be converted into lactone $26 \mathbf{c}$ via an acylation and metathesis sequence (61% yield for the two steps).

To complete the synthesis of anamarine 1a and its two epimers, 1b,c (Scheme 8), all that remains is to deprotect the acetonides and acylate the resulting tetrols. We found that this was most easily accomplished by heating the

SCHEME 8. Synthesis of Anamarine 1a and Epimers 1b,c

26a: $C-5,10, \alpha, \beta$

- C-10, $\alpha, \alpha \cdot 86 \%$

26b: C-5,10, α, α
10-epi-anamarine
26c: C-5,10, β, α
1c: $C-5,10, \beta, \alpha ; 82 \%$
5,10-bis-epi-anamarine

[^4]three diastereomeric lactones $\mathbf{2 6 a}-\mathbf{c}$ in 10% aqueous hydrochloric acid in THF for 10 min at $65^{\circ} \mathrm{C}$. Because of the high polarity, the crude tetrol products were directly acylated by removal of solvent and addition of pyridine, acetic anhydride, and DMAP. This two-step/one-pot protocol provided excellent yields of anamarine 1a (85\% for two steps) and its two diastereomers 1b,c (86\% and 82% yields).

Conclusion

In summary, an enantioselective synthesis of anamarine has been developed. This highly enantio- and diastereocontrolled route illustrates the utility of an iterative Sharpless Asymmetric Dihydroxylation reaction and a Leighton allylation sequence. Although this approach to anamarine is rather long (21 steps), this route provides diastereomers of anamarine in significantly less steps (14 steps). This approach provided anamarine in 8% overall yield and provided its two diastereomers in 14% and 13% yields. It is also worth noting that these new routes start from achiral sources. Further application of this approach to other members of this class of natural products is ongoing.

Experimental Section ${ }^{17}$

(E,4S,5S)-Ethyl-4-(4-methoxyphenoxy)-5-(tert-butyldi-methylsiloxy)-2-enoate (16). To a solution of alcohol 15 (13.2 $\mathrm{g}, 47.1 \mathrm{mmol}$) in 10 mL of dry DMF was added imidazole (9.6 $\mathrm{g}, 141.3 \mathrm{mmol})$ and $\mathrm{TBSCl}(10.2 \mathrm{~g}, 68.3 \mathrm{mmol})$ at room temperature. The reaction was stirred for 2 h , and then the reaction mixture was directly purified by flash chromatography on silica gel (7:3 (v / v) hexane/EtOAc) to provide compound 16 ($18.5 \mathrm{~g}, 100 \%$ yield) as a colorless oil: $R_{f}=0.60(7: 3(\mathrm{v} / \mathrm{v})$ hexane/EtOAc); IR (neat, cm^{-1}) 2930, 1720; [$\left.\alpha\right]^{25} \mathrm{D}-15^{\circ}$ (c 1, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 7.02(\mathrm{dd}, J=4.5,15.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.78$ (s, 2H), 6.77 (s, 2H), 6.06 (dd, $J=1.5,15.8 \mathrm{~Hz}$, 1 H), 4.58 (ddd, $J=1.5,4.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dq}, J=1.0,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.07(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$, 0.87 (s, 9H), 0.07 ($\mathrm{s}, 3 \mathrm{H}$), $0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 62.5$ $\mathrm{MHz}) \delta 165.7,154.0,151.7,144.0,123.0,116.5,116.5,114.3$, $114.3,81.3,69.5,60.1,55.2,25.6,25.6,25.6,18.8,17.8,14.0$, $-4.91,-4.95$; HRMS (CI) calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{Si}+\mathrm{Na}\right]^{+}$ 417.2068, found 417.2086.
(2S,3S,4S,5S)-Ethyl-4-(4-methoxyphenoxy)-5-(tert-bu-tyldimethylsiloxy)-2,3-dihydroxyhexanoate (A). ${ }^{18}$ Into a 250 mL round-bottom flask was added 50 mL of $t-\mathrm{BuOH}, 50$ mL of water, $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(19.7 \mathrm{~g}, 60.0 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(8.3 \mathrm{~g}, 60.0$ mmol), $\mathrm{MeSO}_{2} \mathrm{NH}_{2}(1.9 \mathrm{~g}, 20.0 \mathrm{mmol})$, (DHQD) ${ }_{2}$ PHAL (321 mg , $0.4 \mathrm{mmol}, 2 \mathrm{~mol} \%)$, and $\mathrm{OsO}_{4}(51 \mathrm{mg}, 0.2 \mathrm{mmol}, 1 \mathrm{~mol} \%)$. The mixture was stirred at room temperature for about 15 min and then cooled to $0{ }^{\circ} \mathrm{C}$. To this solution was added a solution of $\mathbf{1 6}(7.8 \mathrm{~g}, 20.0 \mathrm{mmol})$ in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the reaction was stirred vigorously at $0{ }^{\circ} \mathrm{C}$ for 20 h . The reaction was quenched with solid sodium sulfite at room temperature. Then the mixture was filtered through a pad of Celite/florisil and eluted with $(2 \times 80 \mathrm{~mL})$ ethyl acetate. The combined organic layers were washed with 2 N KOH and brine and dried over anhydrous sodium sulfate. The solvent was removed in vacuo. The crude product was purified by flash chromatography on silica gel (7:3 (v/v) hexane/EtOAc) yielding compound \mathbf{A} (7.3 $\mathrm{g}, 85 \%$ yield) as a viscous oil: $R_{f}=0.39(7: 3(\mathrm{v} / \mathrm{v})$ hexane/

[^5]EtOAc); $[\alpha]^{25}$ D -18° (c 1, CHCl_{3}); IR (neat, cm^{-1}) 3474, 2931, 1736,$1506 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 6.93(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $2 \mathrm{H}), 6.78$ (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.35-4.19(\mathrm{~m}, 6 \mathrm{H}), 4.08(\mathrm{~s}, 1 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 62.5 \mathrm{MHz}\right) \delta 173.3,154.3,151.5,117.4,117.4$, $114.5,114.5,76.6,71.9,70.2,68.3,61.5,55.3,25.5,25.5,25.5$, 17.6, 17.0, 14.0, $-5.05,-5.40$; HRMS (CI) calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{7^{-}}\right.$ $\mathrm{Si}+\mathrm{Na}]^{+} 451.2123$, found 451.2142 .
(4S,5R)-Ethyl-5-(1R,2S)-(2-methoxyphenoxy-1-tert-bu-tyldimethylsiloxy)-2,2-dimethyl-1,3-dioxolane-4-carboxyate (17). To a solution of $\mathbf{A}(6.28 \mathrm{~g}, 14.7 \mathrm{mmol})$ in 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 2,2-dimethoxypropane ($9.09 \mathrm{~mL}, 73.35$ mmol) and CSA ($137 \mathrm{mg}, 4 \mathrm{~mol} \%, 0.59 \mathrm{mmol}$) at room temperature. In 36 h , the reaction was quenched by adding saturated NaHCO_{3}. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford the crude product. Flash chromatography on silica gel (8:2 (v/v) hexane/EtOAc) provided compound 17 ($5.57 \mathrm{~g}, 81 \%$ yield) as a colorless oil: $R_{f}=0.39$ (7:3 (v/v) hexane/ EtOAc); $[\alpha]^{25}{ }_{\mathrm{D}}+6^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right)$; IR (neat, cm^{-1}) 2932, 1749, $1506 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 6.91(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H})$, 6.76 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.56$ (dd, $J=3.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.15(\mathrm{~m}, 3 \mathrm{H}), 4.05(\mathrm{dd}, J=6.5,6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.23$ (d, $J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H})$, $-0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 62.5 \mathrm{MHz}\right) \delta 171.3,153.8$, $153.5,117.2,117.2,114.1,114.1,111.2,82.8,78.6,75.6,68.2$, $61.3,55.5,26.7,25.7,25.7,25.7,25.6,20.1,17.9,14.0,-4.82$, -4.82; HRMS (CI) calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{O}_{7} \mathrm{Si}+\mathrm{Na}\right]^{+}$491.2436, found 491.2453 .
(4S,5R)-Ethyl-5-(1R,2S)-(2-hydroxy-1-tert-butyldimeth-ylsiloxy)-2,2-dimethyl-1,3-dioxolane-4-carboxyate (B). ${ }^{18}$ To a solution of ether $\mathbf{1 7}(2.70 \mathrm{~g}, 5.77 \mathrm{mmol})$ in 60 mL of CH_{3} $\mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ (4:1) was added CAN ($6.32 \mathrm{~g}, 11.53 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After 10 min , the mixture was partitioned between EtOAc and brine. The organic layer was washed with saturated NaHCO_{3} and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford the crude product. Flash chromatography on silica gel (8:2 (v / v) hexane/EtOAc) provided compound B ($1.3 \mathrm{~g}, 61 \%$ yield) as a yellow oil: $R_{f}=0.29$ ($8: 2(\mathrm{v} / \mathrm{v})$ hexane/EtOAc); IR (neat, cm^{-1}) 3442, 2932, 1749; $[\alpha]^{25}{ }_{\mathrm{D}}+12^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 4.48(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dq}, J=1.5$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{ddd}, J=1.7,9.2,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~d}, J=$ $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.21(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 62.5 \mathrm{MHz}\right) \delta 171.2,111.5,78.3,77.8,76.2,67.1,61.3$, $27.2,25.8,25.7,25.7,25.7,20.3,17.9,14.1,-4.32,-5.07$; HRMS (CI) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{6} \mathrm{Si}+\mathrm{Na}\right]^{+} 385.2017$, found 385.2006.
(4S,5R)-Ethyl-5-(1R)-(2-oxo-1-tert-butyldimethylsiloxy)-2,2-dimethyl-1,3-dioxolane-4-carboxyate (18). To a solution of alcohol $\mathbf{B}(1.22 \mathrm{~g}, 3.36 \mathrm{mmol})$ in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added Dess-Martin periodinane ($1.85 \mathrm{~g}, 4.40 \mathrm{mmol}$) at room temperature. After 3 h , the mixture was diluted with hexanes and stirred with a solution of $\mathrm{NaS}_{2} \mathrm{O}_{3}$ for 30 min . The aqueous layer was extracted with EtOAc, and the combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford the crude product. Flash chromatography on silica gel (8:2 (v/v) hexane/EtOAc) provided compound 18 ($1.20 \mathrm{~g}, 99 \%$ yield) as a colorless oil: $R_{f}=0.40$ (8:2 (v/v) hexane/EtOAc); IR (neat, cm^{-1}) 2989, 1748; [$\left.\alpha\right]^{25}{ }_{\mathrm{D}}$ $+14^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 5.10(\mathrm{~d}, \mathrm{~J}=$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.25 ($\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.45 (s, 3 H), 1.44 ($\mathrm{s}, 3 \mathrm{H}$), 1.35 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}$, $3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 62.5 \mathrm{MHz}\right) \delta 207.2,170.2$, $112.9,78.6,75.5,72.4,61.6,26.5,26.0,25.7,25.7,25.7,19.9$, 18.1, 14.0, $-4.89,-5.08$; HRMS (CI) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{Si}+\right.$ $\mathrm{Na}]^{+} 383.1860$, found 383.1872 .
(4S,5R)-Ethyl-5-(1R)-(2-oxo-1-hydroxy)-2,2-dimethyl-1,3-dioxolane-4-carboxyate (19). To a solution of silyl ester $18(298 \mathrm{mg}, 0.83 \mathrm{mmol})$ in 4 mL of THF was added benzonic acid ($202 \mathrm{mg}, 1.65 \mathrm{mmol}$) and TBAF $(1.65 \mathrm{~mL}$ of a 1.0 M solution in THF) at room temperature. After 2 h , the mixture was diluted with EtOAc and quenched with saturated $\mathrm{NaH}-$ CO_{3}. The aqueous layer was extracted with EtOAc, and the combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford the crude product. Flash chromatography on silica gel ($8: 2(\mathrm{v} / \mathrm{v}$) hexane/ EtOAc) provided compound 19 ($151 \mathrm{mg}, 90 \%$ yield) as a colorless oil: $R_{f}=0.25$ (8:2 (v/v) hexane/EtOAc); IR (neat, cm^{-1}) 3453, 2986, 1744; $[\alpha]^{25}{ }_{\mathrm{D}}+32^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $270 \mathrm{MHz}) \delta 4.93(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.56(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H})$, 1.45 (s, 3H), $1.42(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 62.5 \mathrm{MHz}\right) \delta 209.3,169.8,113.4,79.9,76.2$, 71.5, 62.1, 26.3, 25.7, 19.3, 14.0; HRMS (CI) calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{6}\right.$ $+\mathrm{Na}]^{+}$269.0996, found 269.1007.
(4S,5R)-Ethyl-5-(1S,2S)-(1,2-dihydoxypropyl)-2,2-dimeth-yl-1,3-dioxolane-4-carboxyate (C). ${ }^{18}$ (4S,5R)-Ethyl-5-(1R,-2S)-(1,2-dihydoxypropyl)-2,2-dimethyl-1,3-dioxolane-4carboxyate (D). ${ }^{18}$ To a solution of alcohol $19(99 \mathrm{mg}, 0.40$ $\mathrm{mmol})$ in 5 mL of ether was added $\mathrm{Zn}\left(\mathrm{BH}_{4}\right)_{2}(4 \mathrm{~mL}, 0.39 \mathrm{mmol})$ at $-10{ }^{\circ} \mathrm{C}$. After 2.5 h , the mixture was quenched with saturated NaHCO_{3}. The aqueous layer was extracted with EtOAc, and the combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford the crude mixture of regioisomers ($\mathbf{C} / \mathbf{D}=5 / 1$ determined by ${ }^{1} \mathrm{H}$ NMR). Flash chromatography on silica gel (8:2 (v/v) hexane/ EtOAc) provided two pure regioisomers ($75 \mathrm{mg}, 75 \%$ combined yield), $\mathbf{C}(62 \mathrm{mg}, 63 \%$ yield) as a colorless oil and $\mathbf{D}(12 \mathrm{mg}$, 12%) as a colorless oil.

C: $R_{f}=0.20\left(5: 5(\mathrm{v} / \mathrm{v})\right.$ hexane/EtOAc); IR (neat, $\left.\mathrm{cm}^{-1}\right) 3465$, 2988, 1453, 1375; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 4.60(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.37 (dd, $J=2.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.23$ (q, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50$ (ddd, $J=1.8,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.60(\mathrm{~d}, ~ J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.23 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.47 ($\mathrm{s}, 3 \mathrm{H}$), 1.42 ($\mathrm{s}, 3 \mathrm{H}$), 1.29 (d, $J=6.0$ $\mathrm{Hz}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 130 \mathrm{MHz}$) $\delta 170.8,111.5,78.3,75.4,72.7,69.5,61.5,26.6,25.7,19.8,14.1$; HRMS (CI) calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}$271.1152, found 271.1154.

D: $R_{f}=0.25\left(5: 5(\mathrm{v} / \mathrm{v})\right.$ hexane/EtOAc); IR (neat, $\left.\mathrm{cm}^{-1}\right) 3464$, 2986, 1451, 1378; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 4.52(\mathrm{~d}, ~ J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.30 (dd, $J=5.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.24$ (q, $J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.23(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dq}, J=3.7,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.54 (dd, $J=3.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.04 (bs, 2 H), 1.46 ($\mathrm{s}, 3 \mathrm{H}$), 1.38 $(\mathrm{s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 62.5 \mathrm{MHz}\right) \delta 171.8,111.1,79.4,75.8,74.9,66.7$, 61.8, 26.8, 25.4, 19.4, 14.0; HRMS (CI) calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{6}+\right.$ $\mathrm{Na}]^{+} 271.1152$, found 271.1162 .
(2S,3R)-Ethyl-2,2-dimethyl-5-((4S,5S)-2', $\mathbf{2}^{\prime}, 5$-trimethyl$1^{\prime}, 3^{\prime}$-dioxolan-4'-yl)-1,3-dioxolane-4-carboxyate (20). To a solution of diol $\mathbf{C}(120 \mathrm{mg}, 0.49 \mathrm{mmol})$ in 4 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 2,2-dimethoxypropane ($0.61 \mathrm{~mL}, 4.9 \mathrm{mmol}$) and CSA ($18 \mathrm{mg}, 10 \mathrm{~mol} \%, 0.074 \mathrm{mmol}$) at room temperature. After 24 h, the reaction was quenched by adding saturated NaHCO_{3}. The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford the crude product. Flash chromatography on silica gel (8:2 (v / v) hexane/ EtOAc) provided compound $20(92 \mathrm{mg}, 65 \%$ yield) as a colorless oil: $R_{f}=0.65(7: 3(\mathrm{v} / \mathrm{v})$ hexane/EtOAc $) ;[\alpha]^{25}{ }_{\mathrm{D}}+72^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right)$; IR (neat, cm^{-1}) 2931, $1746 ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 4.47$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dq}, J=6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{q}$, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=2.0$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.01 (dd, $J=1.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.51 ($\mathrm{s}, 3 \mathrm{H}$), 1.49 (s, 3H), $1.42(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$, $1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 62.5 \mathrm{MHz}\right) \delta 170.7$, $111.5,108.5,77.6,75.8,75.6,72.6,61.4,26.7,26.7,25.8,25.5$,
14.8, 14.2; HRMS (CI) calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}$311.1465, found 311.1459.
(2S,3R)-2,2-Dimethyl-5-((4'S,5'S)-2', $2^{\prime}, 5$-trimethyl-1', 3^{\prime} -dioxolan-4'-yl)-1,3-dioxolane-4-carboxyate (E). ${ }^{18}$ To a solution of ester $20(100 \mathrm{mg}, 0.35 \mathrm{mmol})$ in 1 mL of THF was added DIBAL-H ($1.0 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexanes, 1.0 mmol) dropwise at $-78{ }^{\circ} \mathrm{C}$. After 1 h , the reaction was quenched by adding 1 mL of acetone and 3 mL of 20% sodium potassium tartrate solution. The mixture was stirred for 30 min . The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford the crude product. Flash chromatography on silica gel (7:3 (v/v) hexane/EtOAc) provided compound $\mathbf{E}\left(75 \mathrm{mg}, 89 \%\right.$ yield) as a colorless oil: $R_{f}=0.21$ (7:3 (v/v) hexane/EtOAc); IR (neat, cm^{-1}) 3369, 2989, 1456; $[\alpha]^{25}{ }_{\mathrm{D}}+60^{\circ}\left(c \quad 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 4.38$ (dq, $J=6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 4.04 (ddd, $J=3.5,3.5,8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.96 (dd, $J=1.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 (dd, $J=1.5,8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.58 (ddd, $J=3.5,7.4,11.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37 (bs, 1 H), 1.48 (s, 3 H), 1.41 ($\mathrm{s}, 3 \mathrm{H}$), 1.38 ($\mathrm{s}, 3 \mathrm{H}$), 1.36 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.32$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 62.5 \mathrm{MHz}\right) \delta 109.3,108.2,77.5,75.3$, 75.2, 72.8, 60.8, 27.1, 27.0, 26.6, 25.4, 15.0; HRMS (CI) calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{5}+\mathrm{Na}\right]^{+} 269.1359$, found 269.1353 .
(2S,3R)-2,2-Dimethyl-5-((4'S,5'S)-2', $2^{\prime}, 5$-trimethyl-1', 3^{\prime} -dioxolan-4'-yl)-1,3-dioxolane-4-carbaldehyde (21). To a solution of oxalyl chloride ($50 \mathrm{mg}, 0.37 \mathrm{mmol}$) in 1 mL of $\mathrm{CH}_{2}-$ Cl_{2} was added DMSO ($36 \mathrm{mg}, 0.47 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. After stirring for 10 min , alcohol $\mathbf{E}(75 \mathrm{mg}, 0.31 \mathrm{mmol})$ in 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise. The mixture was stirred for another 10 min , and then $\mathrm{Et}_{3} \mathrm{~N}$ ($104 \mathrm{mg}, 1.02 \mathrm{mmol}$) was added. After 20 min , the dry ice was removed and the solution was stirred for 30 min and quenched with saturated aqueous NaHCO_{3}. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford the crude product. Flash chromatography on silica gel (7:3 (v/v) hexane/ EtOAc) provided compound $21(58 \mathrm{mg}, 76 \%$ yield) as a colorless oil: $R_{f}=0.23\left(7: 3(\mathrm{v} / \mathrm{v})\right.$ hexane/EtOAc); IR (neat, $\left.\mathrm{cm}^{-1}\right)$ 2986, $1743 ;[\alpha]^{25}{ }_{\mathrm{D}}=+33^{\circ}\left(c \quad 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right)$ $\delta 9.79$ (dd, $J=1.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dq}, J=6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.31 (ddd, $J=1.7,1.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (dd, $J=1.7,6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.94$ (ddd, $J=1.7,1.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 1.50 (s, 6H), 1.40 (s, $3 \mathrm{H}), 1.36(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $62.5 \mathrm{MHz}) \delta$ 201.7, 111.7, 108.5, 81.2, 75.8, 75.7, 72.6, 26.7, 26.6, 26.2, 25.4, 14.9; HRMS (CI) calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{5}+\mathrm{Na}\right]^{+}$ 267.1203, found: 267.1206.
(E)-Ethyl-3-(($\left.2^{\prime} R, 3^{\prime} S\right)-2^{\prime}, 2^{\prime}$-dimethyl-5'-(($\left.4^{\prime \prime} S, 5^{\prime \prime} S\right)-2^{\prime \prime}, 2^{\prime \prime}, 5^{\prime \prime}-$ trimethyl-1", $3^{\prime \prime}$-dioxolan- $4^{\prime \prime}$-yl)-1,3-dioxolane-4'yl)acrylate (6a). (Z)-Ethyl-3-((2'R,3'S)-2', 2^{\prime}-dimethyl-5'-(($\left.4^{\prime \prime} S, 5^{\prime \prime} S\right)$ $2^{\prime \prime}, 2^{\prime \prime}, 5^{\prime \prime}$-trimethyl-1", $3^{\prime \prime}$-dioxolan- $4^{\prime \prime}$-yl)-1,3-dioxolane$4^{\prime} \mathbf{y l}$)acrylate ($\mathbf{6 c}$). To a solution of aldehyde $21(50 \mathrm{mg}, 0.21$ mmol) in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added ylide ($143 \mathrm{mg}, 0.42 \mathrm{mmol}$) at room temperature. After 3 h , the solvent was removed in vacuo. The crude product was purified by flash chromatography on silica gel ($8: 2(\mathrm{v} / \mathrm{v})$ hexane/EtOAc) providing a mixture of E / Z-isomeric acetonides $\mathbf{6 a , c}$ in a 1.1:1 ratio ($63 \mathrm{mg}, 98 \%$ yield) as a colorless oil: $R_{f}=0.38$ (8:2 (v/v) hexane/EtOAc); IR (neat, $\left.\mathrm{cm}^{-1}\right) 2989,1714 ;{ }^{1} \mathrm{H}$ NMR (mixture) $\left(\mathrm{CDCl}_{3}, 270\right.$ $\mathrm{MHz}) \delta 6.99(\mathrm{dd}, J=15.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{dd}, J=15.8,1.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.56 (ddd, $J=7.5,4.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.19 (q, $J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}$), 4.01 (dd, $J=7.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.68 (dd, $J=7.9,7.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.54 (dd, $J=7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 1.40 (s, 3 H), 1.39 (s, $6 \mathrm{H}), 1.34(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 67.5 \mathrm{MHz}\right) \delta 166.3,145.0,121.4,110.4$, 109.1, 83.1, 81.5, 79.3, 76.6, 60.5, 27.4, 27.0, 26.9, 26.8, 18.5, 14.3; HRMS (CI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{4}+\mathrm{Na}\right]^{+} 337.1622$, found 337.1618.
(E)-3-(($\left.4^{\prime} R, 5^{\prime} S\right)-2^{\prime}, 2^{\prime}$-Dimethyl- $5^{\prime}-\left(\left(4^{\prime \prime} S, 5^{\prime \prime} S\right)-2^{\prime \prime}, 2^{\prime \prime}, 5^{\prime \prime}\right.$-tri-methyl-1", $3^{\prime \prime}$-dioxolan- $4^{\prime \prime}$-yl)- $1^{\prime}, 3^{\prime}$-dioxolane- 4^{\prime}-yl)prop-2-en-1-ol (F). ${ }^{18}$ (Z)-3-((4'R,5'S)-2', $\mathbf{2}^{\prime}$-Dimethyl- $5^{\prime}-\left(\left(4^{\prime \prime} S, 5^{\prime \prime} S\right)\right.$ $2^{\prime \prime}, 2^{\prime \prime}, 5^{\prime \prime}$-trimethyl-1", $3^{\prime \prime}$-dioxolan- $4^{\prime \prime}$-yl)- $1^{\prime}, 3^{\prime}$-dioxolane- 4^{\prime} -yl)prop-2-en-1-ol (G). ${ }^{18}$ To a solution of ester $\mathbf{6 a , c}$ (1.1:1 ratio
of E / Z isomers) ($65 \mathrm{mg}, 0.20 \mathrm{mmol}$) in 1 mL of THF was added DIBAL-H ($0.60 \mathrm{~mL}, 1.0 \mathrm{M}$ in hexanes, 4.0 mmol) dropwise at $-78^{\circ} \mathrm{C}$. After 30 min , the reaction was quenched by adding 1 mL of acetone and 3 mL of 20% sodium potassium tartrate solution. The mixture was stirred for 30 min . The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford the crude product. Flash chromatography on silica gel ($7: 3(\mathrm{v} / \mathrm{v})$ hexane/EtOAc) provided allylic alcohol \mathbf{F} ($26 \mathrm{mg}, 46 \%$ yield) and $\mathbf{G}(25 \mathrm{mg}, 45 \%$ yield) (91% combined yield) as a colorless oil.

F: $R_{f}=0.20\left(7: 3(\mathrm{v} / \mathrm{v})\right.$ hexane/EtOAc); IR (neat, $\left.\mathrm{cm}^{-1}\right) 3428$, $2986 ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 6.06$ (ddd, $J=5.0,5.0$, $15.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.70 (dddd, $J=1.7,1.7,7.9,15.5 \mathrm{~Hz}, 1 \mathrm{H}$), $4.43-$ $4.33(\mathrm{~m}, 2 \mathrm{H}), 4.19$ (d, $J=3.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.94 (dd, $J=1.8,6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=2.0,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}$, 3 H), $1.42(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 67.5 \mathrm{MHz}\right) \delta 135.2,127.2,109.4,108.6,79.3$, 78.1, 74.8, 72.7, 62.7, 27.2, 26.9, 26.8, 25.6, 15.1; HRMS (CI) calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{5}+\mathrm{Na}\right]^{+}$295.1516, found 295.1513.

G: $R_{f}=0.25\left(7: 3(\mathrm{v} / \mathrm{v})\right.$ hexane/EtOAc); IR (neat, $\left.\mathrm{cm}^{-1}\right) 3423$, 2986; $[\alpha]^{25} \mathrm{D}+59^{\circ}$ (c 1, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta$ 5.94 (ddd, $J=1.0,6.7,11.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.53 (dddd, $J=1.0,1.0$, $8.9,9.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.74 (ddd, $J=1.0,8.6,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ (dq, $J=6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{dd}, J=6.9,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.89$ (dd, $J=1.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.52$ (dd, $J=1.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.52$ (s, $3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.35$ $(\mathrm{s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 67.5 \mathrm{MHz}\right) \delta 134.7,128.1,109.5$, $108.5,79.4,74.5,73.2,72.7,58.4,27.2,26.9,26.7,25.5,14.9$; HRMS (CI) calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{5}+\mathrm{Na}\right]^{+} 295.1516$, found 295.1513.
(E)-3-((4'R,5'S)-2', 2^{\prime}-Dimethyl-5'-((4"S,5"S)-2", $2^{\prime \prime}, 5^{\prime \prime}$-tri-methyl-1", $3^{\prime \prime}$-dioxolan- $4^{\prime \prime}$-yl)-1', 3^{\prime}-dioxolane- 4^{\prime}-yl)acrylaldehyde (24a). To a solution of alcohol $\mathbf{F}(40 \mathrm{mg}, 0.15 \mathrm{mmol})$ in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{MnO}_{2}(127 \mathrm{mg}, 1.5 \mathrm{mmol})$ at room temperature. After 4 h , the reaction mixture was filtered through a pad of Celite and washed with EtOAc. The organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford the crude product. Flash chromatography on silica gel (8:2 (v/v) hexane/EtOAc) provided aldehyde $\mathbf{2 4 a}$ ($37 \mathrm{mg}, 93 \%$ yield) as a white solid: $\mathrm{mp}=50-$ $52{ }^{\circ} \mathrm{C} ; R_{f}=0.51\left(7: 3(\mathrm{v} / \mathrm{v})\right.$ hexane/EtOAc); IR (neat, $\left.\mathrm{cm}^{-1}\right) 2989$, 1682; $[\alpha]^{25} \mathrm{D}+59\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta$ 9.59 (d, $J=7.7, \mathrm{~Hz}, 1 \mathrm{H}$), 6.76 (dd, $J=5.7,15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.42$ (ddd, $J=1.2,7.7,15.6 \mathrm{~Hz}, 1 \mathrm{H}$), 4.68 (ddd, $J=1.2,5.7,8.7$, $\mathrm{Hz}, 1 \mathrm{H}$), 4.42 (dq, $J=6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=1.2,6.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.66 (dd, $J=1.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 1.53 (s, 3 H), 1.48 (s, $3 \mathrm{H}), 1.43$ (s, 3H), 1.39 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$), $1.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 67.5 \mathrm{MHz}\right) \delta 192.8,151.6,133.1,110.7,108.7$, 79.4, 76.5, 74.5, 72.7, 26.9, 26.8, 26.6, 25.4, 14.8; HRMS (CI) calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{5}+\mathrm{Na}\right]^{+}$293.1359, found 293.1368.
(Z)-3-(($\left.4^{\prime} R, 5^{\prime} S\right)-2^{\prime}, 2^{\prime}$-Dimethyl-5'-(($\left.4^{\prime \prime} S, 5^{\prime \prime} S\right)-2^{\prime \prime}, 2^{\prime \prime}, 5^{\prime \prime}$-tri-methyl-1", $3^{\prime \prime}$-dioxolan- $4^{\prime \prime}$-yl)-1', 3^{\prime}-dioxolane- 4^{\prime}-yl)acrylaldehyde (24c). To a solution of alcohol $\mathbf{G}(38 \mathrm{mg}, 0.14 \mathrm{mmol})$ in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{MnO}_{2}(122 \mathrm{mg}, 1.4 \mathrm{mmol})$ at room temperature. After 5 h , the reaction mixture was filtered through a pad of Celite and washed with EtOAc. The organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford the crude product. Flash chromatography on silica gel ($8: 2$ (v / v) hexane/EtOAc) provided aldehyde $\mathbf{2 4 c}$ ($35 \mathrm{mg}, 92 \%$ yield) as a colorless oil: $R_{f}=0.45$ (7:3 (v/v) hexane/EtOAc); IR (neat, cm^{-1}) 2989, 1682; [$\left.\alpha\right]^{25}{ }_{\mathrm{D}}$ $+60^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 270 \mathrm{MHz}\right) \delta 10.17(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), \delta 6.52$ (dd, $J=8.2,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.10$ (ddd, $J=$ $1.2,7.9,11.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.26 (ddd, $J=1.2,8.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.42 (dq, $J=6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=1.2,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.64 (dd, $J=1.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.46$ $(\mathrm{s}, 3 \mathrm{H}), 1.40(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $67.5 \mathrm{MHz}) \delta 191.5,146.2,133.0,110.8,108.8,79.5,73.9,73.4$, 72.7, 27.2, 27.0, 26.7, 25.5, 14.9; HRMS (CI) calcd for [$\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{5}$ $+\mathrm{Na}]^{+} 293.1359$, found 293.1368 .
(3R,E)-1-(($\left.4^{\prime} R, 5^{\prime} S\right)-2^{\prime}, 2^{\prime}$-Dimethyl-5'-(($\left.4^{\prime \prime} S, 5^{\prime \prime} S\right)-2^{\prime \prime}, 2^{\prime \prime}, 5^{\prime \prime}-$ trimethyl-1", $3^{\prime \prime}$-dioxolan- $4^{\prime \prime}$-yl)- $1^{\prime}, 3^{\prime}$-dioxolan- 4^{\prime}-yl)hexa-1,5-dien-3-ol (25a). To a solution of (S, S)-27 $(127 \mathrm{mg}, 0.22$ mmol) in 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added aldehyde $\mathbf{2 4 a}(20 \mathrm{mg}$, 0.074 mmol) in 0.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ dropwise at $-10^{\circ} \mathrm{C}$. The reaction flask was put in a freezer $\left(-10^{\circ} \mathrm{C}\right)$. After 20 h , the reaction was diluted with EtOAc and quenched by adding 1 N HCl and the mixture was vigorously stirred at room temperature for 15 min . The mixture was filtered through a pad of Celite, and the layers were separated. The aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, before being concentrated to afford the crude product. Flash chromatography on silica gel ($9: 1$ (v/v) hexane/EtOAc) provided compound 25a ($21 \mathrm{mg}, 91 \%$ yield) as a colorless oil: $R_{f}=0.25$ (7:3 (v/v) hexane/EtOAc); IR (neat, cm^{-1}) 3453, 2989, 1637; $[\alpha]^{25} \mathrm{D}+48^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 5.93$ (dd, $J=6.0,15.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.80 (ddd, $J=7.8,9.6,17.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.69$ (dd, $J=7.8,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16$ (bs, 1 H), 5.14 (dd, $J=1.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ (dd, $J=8.4,8.4,1 \mathrm{H}), 4.36$ (dd, $J=$ $6.0,6.0,1 \mathrm{H}$), 4.23 (dd, $J=5.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93$ (d, $J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.58 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.37 (ddd, $J=1.2,7.8,13.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.25 (ddd, $J=7.2,7.8,13.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.52 (s, 3 H), $1.44(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 67.5 \mathrm{MHz}\right) \delta 137.7,133.7,127.0,118.7$, 109.5, 108.4, 79.4, 78.2, 74.9, 72.7, 70.5, 41.7, 27.2, 26.9, 26.8, 25.6, 15.1; HRMS (CI) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{5}+\mathrm{Na}\right]^{+}$335.1829, found 335.1823.
(3R,E)-1-((4'R,5'S)-2', 2^{\prime}-Dimethyl-5'-(($\left.4^{\prime \prime} S, 5^{\prime \prime} S\right)-2^{\prime \prime}, 2^{\prime \prime}, 5^{\prime \prime}-$ trimethyl-1", $3^{\prime \prime}$-dioxolan- $4^{\prime \prime}$-yl)-1', 3^{\prime}-dioxolan- 4^{\prime}-yl)hexa-1,5-dien-3-yl Acrylate (5a). To a solution of alcohol 5a (20 $\mathrm{mg}, 0.064 \mathrm{mmol}$) in 1 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added acrylic acid ($18 \mu \mathrm{~L}, 0.26 \mathrm{mmol}$), DCC ($52 \mathrm{mg}, 0.26 \mathrm{mmol}$), and DMAP (2 mg , catalytic amount). After 3 h , the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, filtered through a pad of Celite, and washed with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with saturated aqueous NaHSO_{4}, saturated aqueous NaHCO_{3}, and brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, before being concentrated to afford the crude product. Flash chromatography on silica gel (9:1 (v/v) hexane/EtOAc) provided ester $\mathbf{2 5 a}$ ($19 \mathrm{mg}, 83 \%$ yield) as a colorless oil: $R_{f}=0.50(7: 3(\mathrm{v} / \mathrm{v})$ hexane $/ \mathrm{EtOAc}$); IR (neat, cm^{-1}) 2986, 1731; $[\alpha]^{25}{ }_{\mathrm{D}}+40^{\circ}\left(c 1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $600 \mathrm{MHz}) \delta 6.39$ (dd, $J=1.2,17.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.10$ (dd, $J=10.2$, $17.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.86 (dd, $J=6.6,15.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.82 (dd, $J=$ $1.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.75 (ddd, $J=7.2,7.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.70$ (ddd, $J=1.2,7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.42$ (dd, $J=6.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), $5.11-5.07$ (m, 2H), 4.36-4.33 (m, 2H), 3.89 (dd, $J=2.4,6.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.57 (dd, $J=2.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.21-3.17(\mathrm{~m}, 1 \mathrm{H})$, 2.44 (dd, $J=6.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.41$ $(\mathrm{s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, $125 \mathrm{MHz}) \delta 165.2,132.8,132.7,130.8,129.7,128.5,118.3$, $109.6,108.4,79.4,78.0,75.0,72.8,72.8,38.8,27.1,26.9,26.8$, 25.6, 15.1; HRMS (CI) calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{6}+\mathrm{Na}\right]^{+} 389.1935$, found 389.1924.
($6 R$)-5,6-Dihydro-6-(E)-2'-($\left.4^{\prime} R, 5^{\prime} S\right)-2^{\prime}, 2^{\prime}$-dimethyl- $5^{\prime}-$ ($\left(4^{\prime \prime} S, 5^{\prime \prime} S\right)-2^{\prime \prime}, 2^{\prime \prime}, 5^{\prime \prime}-$ trimethyl-1", $3^{\prime \prime}$-dioxolan- $4^{\prime \prime}$-yl)-1 $1^{\prime}, 3^{\prime}$-di-oxolan-4'-yl)pyran-2-one (26a). To a solution of triene 5a ($18 \mathrm{mg}, 0.051 \mathrm{mmol}$) in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added Grubbs catalyst ($9 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction was heated at reflux for 2 h . Solvent was removed under reduced pressure, and the residue was purified by flash chromatography on silica gel (7:3 (v/v) hexane/EtOAc) providing lactone $\mathbf{2 6 a}\left(13 \mathrm{mg}, 77 \%\right.$ yield) as a colorless oil: $R_{f}=0.14$ (7:3 (v/v) hexane/EtOAc); IR (neat, cm^{-1}) 2983, 1742; [$\left.\alpha\right]^{25}$ D $+133^{\circ}\left(c 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 6.89$ (ddd, $J=1.2,3.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.05 (ddd, $J=1.2,1.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.98 (dd, $J=6.0,15.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.85 (dd, $J=7.2,15.0 \mathrm{~Hz}$, 1 H), 4.95 (ddd, $J=4.8,6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.41 (dd, $J=7.8,7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=6.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, ~ J=6.6 \mathrm{~Hz}$, 1 H), 3.57 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.49 (ddd, $J=4.8,5.4,18.6 \mathrm{~Hz}$, 1 H), 2.43 (dddd, $J=2.4,2.4,10.8,18.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.52 ($\mathrm{s}, 3 \mathrm{H}$), $1.45(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{~s}$,
$3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 163.5, 144.4, 131.5, 130.9, 121.6, 109.8, 108.4, 79.4, 77.6, 77.1, 74.5, 72.7, 29.6, 27.1, 26.9, 26.7, 25.5, 15.0; HRMS (CI) calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{6}+\mathrm{Na}\right]^{+}$ 361.1622 , found 361.1621 .

Anamarine (1a). A solution of 10% aqueous HCl and THF ($1: 1,1.0 \mathrm{~mL}$) was added to a flask containing acetonide 26a (8 $\mathrm{mg}, 0.024 \mathrm{mmol}$). The mixture was heated at $65^{\circ} \mathrm{C}$ for 20 min , and the solvent was removed at reduced pressure. The residue was dissolved in 1.0 mL of pyridine, and then $\mathrm{Ac}_{2} \mathrm{O}(0.1 \mathrm{~mL})$ and a catalytic amount of DMAP were added. After 20 h , solid NaHCO_{3} was added, diluted with EtOAc, and then filtered through a pad of Celite. The solvent was removed under reduced pressure, and the residue was purified by flash chromatography on silica gel ($50: 50(\mathrm{v} / \mathrm{v}$) hexane/EtOAc) providing anamarine ($8 \mathrm{mg}, 85 \%$ yield) as a white solid: $\mathrm{mp}=109-111^{\circ} \mathrm{C} ; R_{f}=0.15(1: 1(\mathrm{v} / \mathrm{v})$ hexane/EtOAc); IR (neat, cm^{-1}) 2986, 1742; $[\alpha]^{25}{ }_{\mathrm{D}}+17^{\circ}\left(c 0.3, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $270 \mathrm{MHz}) \delta 6.88$ (ddd, $J=3.5,5.2,9.9 \mathrm{~Hz}, 1 \mathrm{H}$), 6.05 (ddd, $J=1.7,1.7,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.88-5.74(\mathrm{~m}, 2 \mathrm{H}), 5.36(\mathrm{dd}, J=5.2$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.30$ (dd, $J=3.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ (dd, $J=3.5$,
$7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.91(\mathrm{dq}, J=6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.47-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.02$ (s, 3H), 1.17 (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ $\delta 170.0,169.8,169.7,169.6,163.4,144.4,133.0,125.6,121.5$, $75.8,71.9,71.6,70.5,67.3,29.1,21.0,20.9,20.8,20.6,15.8 ;$ HRMS (CI) calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{10}+\mathrm{Na}\right]^{+} 449.1419$, found 449.1424.

Acknowledgment. We are grateful to NIH (GM63150) and NSF (CHE-0415469) for the support of our research program and NSF-EPSCoR (0314742) for a 600 MHz NMR at WVU.

Supporting Information Available: Complete experimental procedures and spectral data for all new compounds can be found in the Supporting Information. This material is available free of charge via the Internet at http://pubs.acs.org.
JO051681P

[^0]: (1) Jodynis-Liebert, J.; Murias, M.; Bloszyk, E. Planta Med. 2000, 66, 199.
 (2) Drewes, S. E.; Schlapelo, B. M.; Horn, M. M.; Scott-Shaw, R.; Sandor, O. Phytochemistry 1995, 38, 1427.
 (3) (a) Smith, C. M.; O'Doherty, G. A. Org. Lett. 2003, 5, 1959-1962 (b) Garaas, S. D.; Hunter, T. J.; O'Doherty, G. A. J. Org. Chem. 2002, 67, 2682-2685. (c) Hunter, T. J.; O’Doherty, G. A. Org. Lett. 2001, 3, 2777.
 (4) (a) Pereda-Miranda, R.; Fragoso-Serrano, M.; Cerda-GarciaRojas, C. M. Tetrahedron 2001, 57, 47-53. (b) Pereda-Miranda, R.; Hernandez, L.; Villavicencio, M. J.; Novelo, M.; Ibarra, P.; Chai, H.; Pezzuto, J. M. J. Nat. Prod. 1993, 56, 583-593.

[^1]: (5) (a) Diaz-Oltra, S.; Murga, J.; Falomir, E.; Carda, M.; Marco, J. A. Tetrahedron 2004, 60, 2979-2985. (b) Falomir, E.; Murga, J.; Ruiz, P.; Carda, M.; Marco, J. A. J. Org. Chem. 2003, 68, 5672-5676. (c) Lorenz, K.; Lichtenthaler, F. W. Tetrahedron Lett. 1987, 28, 64376440. (d) Valverde, S.; Herradon, A.; Herradon, B.; Babanal, R. M.; Marrtin-Lomas, M. Tetrahedron 1987, 43, 3499-3504. (e) Lichtenthaler, F. W.; Lorenz, K.; Ma, W. Tetrahedron Lett. 1987, 28, 47-50. (f) Gao, D.; O'Doherty, G. A. Org. Lett. 2005, 7, 1069-1072.
 (6) Migual Carda and Alberto Marco noted that various stereoisomers of spicigerolide (2) have improved cytotoxicity against several cancer cell lines; see ref 5 b .
 (7) (a) Ahmed, Md. M.; Berry, B. P.; Hunter, T. J.; Tomcik, D. J.; O'Doherty, G. A. Org. Lett. 2005, 7, 745-748. (b) Ahmed, Md. M.; O'Doherty, G. A. Tetrahedron Lett. 2005, 46, 3015-3019.

[^2]: (13) Although the conversion of $\mathbf{1 0 - 1 1}$ is a diastereoselective matched reaction with the (DHQD$)_{2} \mathrm{PHAL} / \mathrm{OsO}_{4}$ reagent system, the reaction occurs at a significantly slower rate and, as such, higher catalyst loading is required ($2 \% \mathrm{OsO}_{4}$ and 4% (DHQD) $)_{2} \mathrm{PHAL}$, see Scheme 3).

[^3]: (14) The lack of E / Z selectivity (1:1) in the Wittig reaction with aldehyde 21 is quite surprising when compared to the nearly identical Wittig reaction with the C-5 diastereomeric aldehyde 13 , where the E isomer $\mathbf{6 b}$ was formed with almost 10:1 selectivity. Although we cannot offer an explanation for this result, we did find this result to be reproducible.

[^4]: (15) Previous approaches to this class of pyranone natural products used the Brown AllylBIpc 2_{2} reagent for this transformation; see ref 5ad. We have found that the Leighton reagent works equally well in terms of stereochemical outcome and allows for a significantly simpler product isolation procedure; see ref 9 .
 (16) All enantioexcesses were determined by examining the ${ }^{1} \mathrm{H}$ NMR of the corresponding Mosher esters. See: Sullivan, G. R.; Dale, J. A.; Mosher, H. S. J. Org. Chem. 1973, 38, 2143.

[^5]: (17) Experimental procedures for the synthesis of anamarine are presented in the Experimental Section. Complete experimental procedures and spectral data for all compounds are presented in the Supporting Information.
 (18) These structures are not shown in the text.

